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Abstract 

The 2 • 2 complex matrix formulation of relativity and the two-component spin-�89 
formalism are merged with the complex quaternion algebra to yield a concise, manifestly 
covariant formalism of relativistic quantum mechanics. Along with reproducing all the 
old results of quantum theory, this complex quaternion formulation extends naturally 
the concept of scalar mass by adding to it orientation- and velocity-dependent parts 
giving a hyper-mass. The hyper-mass spin-�89 equation, with the scalar part of the mass 
set equal to zero, gives a subtle variation on the two-component neutrino theory with 
very unsubtle consequences, such as an invariant mass parameter which could distinguish 
ve and v, and elimination of the superposition principle. 

1. Introduction 

The real quaternion field is well known to most mathematicians from 
group theory, but it is not so generally known in the physics community. 
Most physicists are very familiar with the algebra of Pauli matrices, which 
is very similar to that of  quaternions as we show in the next section. The 
relative merits of  the quaternion formulation, due to Hamilton and 
supported by Tait, and the newer vector analysis of  Gibbs and Heaviside 
was hotly disputed (Bork, 1966) from about 1880 to 1900. The vector 
enthusiasts won out, obviously; but as we shall see, Hamilton's quaternions 
are well suited for relativistic problems. Einstein's four-dimensional space- 
time was not introduced until 1905, when the vector formalism was already 
well established. The quaternion formalism is directly applicable to three 
space and one time dimension, and to spin-�89 To a mathematician this is a 
severe limitation, but for the real world at a fundamental level these con- 
ditions appear to dominate. In any case, Hestenes (1966, 1968, 1971) and 
others have shown how to generalize this approach, using Clifford's algebra 
to obtain a 'multi-vector' formulation applicable to any dimensional space. 
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In recent years there has been considerable interest in finding useful 
generalizations of quantum mechanics (Gtirsey, 1956a, 1958; Misra, 1960; 
Phipps, 1960; Pais, 1961; Tiomno, 1963; Jordan, 1968; Penney, 1968; 
Biedenharn et al., 1971), many of these involving quaternions (Klein, 1911 ; 
Lanczos, 1929; Birkhoff & yon Neumann, 1936; Conway, 1937; Brand, 
1947; Yang & Mills, 1954; G~irsey, 1956a, b, c; Schremp, 1959; Kaneno, 
1960; Allcock, 1961; Dyson, 1962; Finkelstein et al., 1962a, b; Winans, 
1962; Emch, 1963; Finkelstein et al., 1963; Jen~, 1966; Natarajan & 
Viswanath, 1967). Because of the excellent agreement between standard 
non-relativistic quantum mechanics and experiment, we should expect that 
any useful generalization must involve the relativistic realm where the 
existing theories have obvious shortcomings. 

The 2 x 2 complex matrices provide the bridge between conventional 
tensor analysis and quaternion analysis. Recently, Sachs has shown how 
to formulate Einstein's general relativity using 2 x 2 complex matrices 
(Newman & Penrose, 1962; Rastall, 1964; Sachs, 1968, 1970). Wightman, 
MacFarlane, and others have shown how to formulate Lorentz trans- 
formations using 2 x 2 complex matrices [the group SL(2, C)] (MacFarlane, 
1962; Naimark, 1964; Streater & Wightman, 1961; Carruthers, 1966). 
MacFarlane's extensive treatment contains the equivalent of the Lorentz 
transformation results summarized in this paper, though the notation is 
different. An elegant treatment of Dirac theory in terms of a two-component 
wave equation has been given by Brown (1962), in which it is shown that 
all the usual results can also be obtained in this formalism. 

The major portion of the present article outlines the basic formalism of 
relativistic quantum mechanics using the complex quaternion ring notation. 
This notation, with the hyperconjugation operation, is very simple and 
streamlined. The majority o four formulation is equivalent to that contained 
in MacFarlane's and Brown's papers. 

A new and potentially important concept emerges, however, from the 
hypercomplex number approach. By generalizing from a complex number 
algebra to a complex quaternion algebra, we are naturally led to explore the 
possibility that observables should be generalized from real numbers to 
some kind of hypercomplex numbers such that in the non-relativistic limit 
they reduce back to real numbers. This pattern of generalization has 
repeated itself many times in the advance of physics. 

We show in Section 6 that a conserved probability current can easily be 
obtained only ifh is not generalized and remains a real scalar. The generaliz- 
ation of mass, by adding space-like parts to the real scalar part, seems to be 
compatible with all the usual requirements of quantum mechanics, except 
that the superposition principle is eliminated and other observables such 
as energy become hypercomplex. Particles with zero scalar mass but non- 
zero space-like mass could provide a way of describing the different kinds 
of neutrinos. The corresponding wave equation is similar to that of the 
two-component neutrino theory. 

It is our point of view that the proven importance of the Pauli matrices 
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and the SU(3) group, along with the dimensionality of  space-time, strongly 
suggest that the ring of  complex quaternions constitutes nature's natural 
number system. I f  the hyper-mass turns out to be helpful in understanding 
neutrinos, then we will have convincing proof. 

2. Space-Time Algebra 

2.1. Flat Space-Time 

In the hypercomplex number formulation of space-time, we represent a 
space-time event, with rectangular coordinates (x ,y , z ,  t), by the number 

x =- xUe u (2.1.1) 

where {x", ~ = 0,1,2, 3,} = {ct, x , y ,  z} and the independent elements e.  are 
isomorphic to the Pauli matrices: 

e0 eo = eo; e~ eo - eo ek =- e~, k = 1,2, 3; ek ek = eo 

el e2 =- iea, i - V ' - I  (cycl. perm.) (2.1.2) 
and 

ejek=----ekej, k r 1 6 2 1 6 2  

We will find it useful to define eight component hypercomplex numbers 

q =- (qR ~' + iq~")e~ (2.1.3) 

(isomorphic to the ring of complex quaternions) and, in addition to the 
usual complex conjugate q*, the hyperconjugate q*, where 

q* - (qR u -- iqIU) e u, q* -~ (R~ + iql u) eu* 

eo* -- eo, and ek* -- --ek, k = 1,2, 3 (2.1.4) 

We can readily show that, given two hypercomplex numbers p and q, 

(pq)* = q'p*, (pq)* = q 'p* ,  (pq)** =p**q** (2.1.5) 

and (p*)* = (p*)*. 

Hypercomplex numbers q for which q* = q* are isomorphic to the field of 
'real' quaternions; q* = q means q is a complex number; q* = q = q* gives a 
real number; q* = - q  means that qO= 0, and will be called a space-like 
number. 

The fiat space-time metric is given by 

ds 2 =- g,~ dx  v dx  ~ eo, (2.1.6) 

where 
g , .  - k(e.* e. + e .  ev* + e~* e ,  + e .e .*)  (2.1.7) 

This gives the usual signature q . . . .  . We define the inner product of  two 
events x and y by 

( x l y ) - g u ~ x ~ y V e o = � 8 8  (2.1.8) 
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Proper Lorentz transformations can now be defined by 

u, = ~ ,  x~L~o (2.1.9) X = X la e #  - >  X Cla 

where 

~(' = ~ ' e  u and ,5r ~L.W =- ~L~r163162 - leo (2.1.10) 

so that 

(x ' ly ' )  = (~q~ x~~163176 = (x[y) (2.1.11) 

For  the special case of  space rotations we have x ~  x ~ and 5r = ~qo, 
(a quaternion). From equation (2.1.t0) we see that (since in general 
5r # s the eight-part number ~qo contains only six independent para- 
meters as required. As examples we give explicitly the transformations Re 
and.LP v for rotation through +r  about  the +z axis and a boost +v along the 
+x  axis: 

x '  = Re*  xRr  Rr = cos (r e0 - i sin (r e3 

x '  = ~v*x~~ ~ v  = cosh(0/2) e0 + sinh(0/2) el (2.1.12) 

where tanh0 = ( - v / c ) .  We readily check that R~ 1 = Re* = R_r and 
s162 = ~ o ,  = ~_v. 

Hypercomplex numbers, a - a" e~, which transform as 

a -+ a' =~q~*a~  = a~ + ~ * a k e k ~ q  ~, (2.1.13) 

will appear often, and will be called axial 4-vectors. Scalars and space-like 
numbers are special cases. 

The flat space-time differential operator can be defined as follows 

0 - 0~' e , ,  O~' =-- O/Ox, and 0* = 0~ e~* = 0, e~ (2.1.14) 

I t  transforms as a 4-vector, 

0 --~ 0' = ~qo, 05r and (0'[0') = (0[0) (2.1.15) 

Our choice of  el e2 = +ie3 corresponds to a right-handed coordinate 
system. Note that erie2* =- i e3*  and therefore x* corresponds to a left- 
handed coordinate system. Similarly, we find 

x* -+ x*' = ~qo, x*~**  (2.1.16) 

The usual tensor treatment of  vector analysis does not admit a direct 
generalization of axial vectors such as r x p when going to four-dimensional 
space-time. The totally antisymmetric angular momentum tensor has six 
non-zero components, and hence doesn't  find a 'vector '  representation. In 
the hypercomplex number formulation, however, we have 

x ~ y  --= �89 y - y* x)  = - ( x [ ~ y ) *  (2.1.17) 

where x and y are 4-vectors. Note that 

xrx-]y -+ x'[~]y' = ~,(x[}~]y) c~ ~ (2.1.18) 
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SO that  x[-X~y is an axial 4-vector. I t  is natural  then tO define an angular  
m o m e n t u m  axial 4-vector by 

L - x[~p (2.1.19) 

where x is the 'pos i t ion '  4-vector and p is the m o m e n t u m  4-vector, Similarly, 
we can define the hyper-curl  as a [ ~ x .  

Some examples o f  how classical physics looks in this nota t ion  are given 
below: 

Generalized momentum 

Action 

Hamilton-Jacobi equation 

Energy-momentum 

rr ~ p + (e/c) A (2.1.20) 

zr - - 0 5 ,  S$ = S (2.1.21) 

(2.1.22) 

Electron equation 

mc2 = _e.~ 0 - -  2e2 .... c ~ A + ~ -  [x + (.~[2)~] (2.1.24) 

where .+ - d/ds(x). 

Electromagnetic fields 

- E + i B - ~ O [ ] A ,  E=_Ekek, B = B k e k  (2.1.25) 

Maxwell'  s equations 

(010) A - 0(0[A) = - J  (2.1.26) 

2.2. Curved Space-Time 

We consider now a non-flat  space-time [gu~ = gu.(x)] �9 To  distinguish 
clearly between fiat and curved space-time, we replace eu by b,(x) in 
writing 4-vectors such as 

ds -~ dx ~ b ~ (2.2.1) 

Then  we have 

(ds[ds) = ds 2 =- �88 b~ + b~ b fi + b fi b~ + b~btfi) dx~ dx ~ 

and 

gw(x) ~- �88 b~ + b~ bfi + bfi b~ + b~ bu~ ) (2.2.2) 

(pip) = m E c 2 (2.1.23) 
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The metric tensor gu~ must be Lorentz invariant and a scalar (co e0), therefore 
we define 

bus b~ - hau, ea and (bus by)* = b,* bu (2.2.3) 

whereas bus is no longer simply related to bv, and bub,  is no longer defined. 
We define 

boeo - bo, bl el - bo, bl e2 ==- iba - - e 2 b l ,  

bl~el  = - b l r  ~, b l r 1 6 2  (2.2.4) 

We consider only transformations between reference frames of the form 

ds ~ ds' - ~q~* d s ~  (2.2.5) 
where 

- - ~ V e ,  and ~qo,~ = ~ q ~ ,  _ le0 (2.2.6) 

Such transformations are well defined, since eubve a is well defined. Such 
transformations are asymptotic to Lorentz transformations for events far 
from all matter and will be called free-fall transformations. 

For a 4-vector A ( x )  we define 

A ( x  + dx)  - A ( x )  + dA (2.2.7) 
where 

d ( A ( x ) ) =  d ( A  • bu) - (dA ~') b ,  + A"  db ,  - ( D A  ~') b~, (2.2.8) 

To first order we can define 

db u = l"~adx a b. - gna 1" 2 dx a b~ - (Fjlds) b~ (2.2.9) 

where [ ,  v _ Fgab~ and ds = dxUb u Here, the Christoffel-like symbols 
. pL * 

F~ 'x will be defined to be contravariant components of the 4-vector/ 'u ~, so 
that db u is invariant (as is bu). 
We have then 

d(A(x ) )  = D(A~)b .  = [dA" + A.(_r'uVlds)lb ~ (2.2.10) 

The covariant differential operator ~ is defined by 

OA ~ 
= ~ bn and ~ ( A  v) - ~ + A u P~n (2.2.11) 

We further define Nv(Sr ~) = 0, ~n((Fu~[ds))  =- O, NV(gu~) = O, N v ( b . )  - O, 
~n(b.*) = 0, and (db.)* -- d(b.*).  We should also have ~ '  = ~*~q~r 

We can see now why b~,bv is not defined. Otherwise, consistency dif- 
ficulties would arise with things like d(b u b.). 

For warped space-time, A * B  and AB* are not equivalent, and we define 
a second invariant product 

[AIB ] =_ �88 B - AB* + B* A - BA*] (2.2.12) 

This gives rise to the warp operator 

[~l ~1 ~ �89 -- ~ ' 1  (2.2.13) 
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In the fiat space-time limit [A [B] goes to zero. 
Thus, [~IN] is a likely choice for a warp-inducing gravitational source 

equation. 

3. Hypereomplex Constants 

The link between algebraic number theory and reality is very profound, 
as evidenced by our ability to describe and predict physical phenomena 
using equations. I f  we take the point of view that the ring of complex 
quaternions gives the natural number system of space-time, we are naturally 
led to ask: 'What is the natural number system which characterizes matter 
and energy in this space-time ?' We have seen that the classical laws and 
their covariance can be simply expressed using complex quaternions. What 
about the fundamental constants themselves ? If  a fundamental 'constant' 
K transforms as an axial 4-vector, 

K = k t ' e t ,  .-+ K ' = k ~ "  et ,=~g* K S ~ = k ~  ~*kJej~LP (3.1) 

then K ' K =  {(/Co) 2 - [(kl) 2 + (k2) z + (k3)2]}eo is invariant and A K  trans- 
forms as a 4-vector if A does. Thus covariant field equations are easily 
constructed in this formalism with axial 4-vector coupling parameters such 
as charge e, mass m, Planck's constant h, and Newton's constant G. 

4. Basic Wave Equations 

In formulating covariant field equations using the hypercomplex number 
formalism developed in Section 2, three types of fields arise quite naturally. 
Their transformation properties are summarized below 

~b, -+ ~b~' 0-- ~bs, ~s = ~b~~ e0 (4.1) 

- +  Cv '  = 4,o, 4,v = 4,v" e ,  (4.2) 

The basic postulate for generating quantum equations is that the classical 
connonical momentump ~ ihO. 

I fh '  = s we can modify this t op  ---> iOh, where Ovh ~ =- h~O ~. Then 

iO' h' = i ~ *  O~r h ~  = ~,q~* i O h ~  
and 

ih;' 0"  = L,~* h* ~ *  0'  ~ q~** = ~r ih* 0' ~ * *  

The simplest zero-mass equations are 

i akr = 0 

(iahliah)r = 0 

iah~b, = 0 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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ih* 3' 4~ = 0 

( i a h l i a h ) 4 o  = 0 

(iahl ah) G = o 

(i Oh li Oh) A -- i ah(i Oh I A) = 0 

If m' = ~ * m ~ ,  we can form the following equations: 

(i 3h[i Oh) 4s = (mclme) 4~ 

(i Oh[i Oh) 4,, = (mc[mc) 4~ 

( i ahli Oh) 4,, = (mc[me) 4,, 

and the coupled equations 

iah4a = m* c4v 

ih* a* 4~ = mc4 .  

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16a) 

(4.16b) 

Equations (4.16a) and (4.16b) are very similar to the tensor formulation 
of the Dirac equation. Here, however, 4a = t~a/~e~ and ~bv = 4v ueu, which 
gives eight complex functions instead of four. 

In flat space-time considered here, equations (4.16a) and (4.16b) can be 
converted to independent 'Klein-Gordon' equations, provided m = m* and 
h = h* 

ih* a* i Oh4a = m* mc 2 4a (4.17) 
and 

i ahih* 3' 4,, = mm* c 2 4v (4.18) 

These are essentially equivalent to equation (4.15) and equation (4.14) 
respectively, if m = m*. 

Since equations (4.16a) and (4.16b) differ from the Dirac equation, it 
is of some interest to examine their classical and non-relativistic limits for 
comparison. If in the classical limit we assume that 4a-> exp(iS/h),  
4~ ~ 4v ->" exp (2iS~h), h* --> h, and mS -+ m; then multiplication of equation 
(4.16a) by its hyperconjugate from the right gives 

(aS)(aS)* = m 2 c z (4.19) 

If equations (4.16a) and (4.16b) are modified by the usual coupling to the 
electromagnetic field, iOh--~ ~-~ i a h -  A(e/e), then the same procedure 
(assuming e*-+e) yields essentially the Hamilton-Jacobi equation, 
equation (2.1.22) 

(3S + (e/c)A) (aS + (e/c) A)* = m 2 c 2 (4.20) 

The non-relativistic limit is obtained from equation (4.17). We replace 
i0h by rr, the generalized momentum, for comparison with the Pauli 
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equation and assume h* --> h, m* -+ m, e* --.'- e. Toobtain the non-relativistic 
limit we take out the rapid time variation of ~ba, 

[ .me 2 ~ .- 
r = exp k-t--if- t)q~, (4.21) 

and then assume the terms containing mc dominate all others. The result is 

th~t~,,.~ ~-~m + i  ( O * N A ) + e A  ~ ~ (4.22) 

which can also be written 

i h ~ , , ~ .  (ihOk-(e/c)Aa)Z2mm 2mceh B + e ~ +  ~ ]~b a (4.23) 

Here, A ~ - 4, B =  Bk ek and E = - Ek ek . The term involving E, it has been 
argued (Condon & Shortley, 1935), is of order (vZ/c2)4, and therefore can 
be neglected. Since ek ~ ~rk, equation (4.23) would be isomorphic to the 
Pauli equation, except that ~,  = ~ ' e ~ ,  and has four, instead of two, 
independent parts. 

We now define the spin operators 

Sk =- �89 (4.24) 

and the raising and lowering operators 

S+ -= �89 +/Sy), S_ = �89 - iSy) f4.25) 

We find that both (e~ + ie2) and (% + ca) are spin-up eigenstates of G,  both 
( e l -  icE) and ( % -  e3) are spin-down states, and that the raising and 
lowering operators connect the states as follows 

(el + ie2) ~-~ (Co- e3), (Co + e3) ~-+ (el -- ie2) 

We therefore obtain the Pauli equation by the two-to-one identification, 
(e~ + iez) and (Co + e3) go t o spin-up. Similarly, for spin-down. Thus for 
m* = ra and h* = h, the extra degrees o f freedom in ~b are probably redundant. 

We note in concluding this discussion of spin states that 

(eo + es)** = +(eo - e3) (4.26) 
whereas 

(el + ie2) ~* = -(el - ie:) (4.27) 

We look now briefly at the free particle solutions of equations (4.16a) 
and (4.16b) for m* = in* = m and h* = h* = h. We define the energy operator 
i3~ and the kth component momentum operator iOkh, k = 1, 2, 3. We 
further combine ~ba and ~b~ into a single matrix, 

14 
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The rest state solution is by definition given by 

i a k h~brest ~ 0, k = 1,2, 3 (4.29) 

We then can obtain uniform velocity states in the usual way by Lorentz 
transformation 

r  -+  r  = ~r ~r (x ' )]  = ~Se* Cv(~cP~ * x ' s  (4.30) 

where x -+ x' = LP* xSe. We define the parameters p~" by 

p '  = p~" e u = s m c ~  (4.31) 

and letp ~ = E' /c .  This gives the usual formulas, 

E '  = y m c  2 and pl, = ymv  (4.32) 

for transformation to a frame moving along - x  with speed -v.  
The eight independent rest solutions of equations (4.16a) and (4.16b) for 

arbitrary spin can be written as 

[ i o o q/a~'eu\  r = exp[-  ~(p x )][a,e,) (4.33) 

and 

r 1 7 6 1 7 6  (4.34) 
\ - a  t' eu] 

where p0 __ mc, x ~ = ct and a ~' is arbitrary. Operation on these functions 
with the energy operator ia~  shows that they are states of positive and 
negative energy as indicated by the subscripts. The corresponding plane 
wave states are given by 

r --> r = exp IT 
i a 

where a - aU eu - b+l(el + lea) + b+2(eo + e3) + b-l(eo -- e3) + b-2 (e l  - iea). 
The PCT transformation properties of equations (4.16a) and (4,16b) can 

also be examined in the usual way (Brown, 1962). 

. 

If  instead of equations (4.2) and (4.3) we try 

r  -+ r = ~e,4,~ r r = ~ . r  
and h -+ h' = 5e~ h ~  

then the following equation is covariant 

i~h,b.  = r m e  

i h * a ~ r 1 6 2  

Wavefunct ion Transformation 

t m -->m =Se~mS(' 

(5.1) 

(5.2) 
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Here 0 = e~,a ~', h =- euh~', m = eum~', ~b. = e ~ . ~ ,  and ~b v = eu4Jv u, as before. 
I t  also follows directly that  

~b  - ~b~* ~b~ + ~bv* ~ba= (~b)" e u (5.3) 

transforms like a 4-vector. However, direct calculation (taking h = h* = h*, 
m = m* = m*, and making use of  the wave equation) shows that  for 

(0/~b) = �89  + [0 ' (~)]*)  = a~162 ~ - 0k[ (~)  k] (5.4) 

we have 
a~(~4,) ~ = 0 (5.5) 

Thus ~b  does not  meet the requirements of  a conserved probability current. 
We then go back to the other possibility, which is 

~b~ -+ ~b.' = ~L.<r ~ ,  and ~b, -+ ~b o' = ~o ,  ~b, (5.6) 

The corresponding wave equation is 

i a h 4 , .  = m*c4,o 
ih$ a$ ~. = mc~,~ (5.7) 

which is covariant since 

m* -+ m*' = (~a* m~a)* = ~L,q* m * ~ * *  (5.8) 

We then find that  in addition to the invariant ~b,* ~ ,  + ~b,* ~b~, we have the 
invariant ~b.* ~v + ~bv* ~b,. In matrix notation we have 

(ioOh ih;O*)(~:)=(oC mO, c)(~:) (5.9) 

Let 

then 

and 

(0 'v) 
-- and c~ = iha (5.10) 

c~b = ( T  mO* c) ~ -~ c~/ 4/ = (m'o c m'*O c) ~b' (5.12) 

We also have 

O, 0 ,m 0 ~q~ 0 (o m*)(O 

which is similar to ~ in the usual Dirac theory. We note that  

(~40" = (~b) ~ (~b)~ and (~b~ ~b) = (~b~ ~b)~ ~ (~b* ~b)* (5.15) 

F rom equation (5.7) we see also that  ~b, does not  satisfy a Klein-Gordon 
equation unless m = m~, since O~ and m* would not  commute.  
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6. Conserved Probabitity Current 

Starting with equation (5.7) and considering h and m as hyper-numbers 
we obtain by suitable manipulation 

O~ h]* q~a %- ~a* [eo h] O~ %- 0~ %*1* ~bv + r %*1 0~ 
= - Ok@,*)[ekh] * ~b, - ~b,*[ek hl 0k(~b,) -- ak@~*)[h * ek*]* q~ 

-~b~*[h*ek*]0k(~b,) (6.1) 

If  we now assume that h = h* = h*, then we have 

0 e 0 ]:0 
(No restriction on m was needed to obtain this result !) 

We therefore define the hyper-number function ] as 

e0) . (6.3) 
and obtain 

0~ ~ - Ok]  k = 0 or Ot - o ~  j (6 .4 )  

Because of the covariance of the wave equation, we also have 

Oo,jo, _ ~k,jk, = 0 (6.5) 

Therefore j should transform as a 4-vector. Explicitly 

0 
] ,=~b, , (e~* e0)~b,e =~b,(~0** 0 ] ( e , *  0 ] ( ~ ~  5q,)~be, (6.6) 

c~] \ 0 %]  \ 0 

But ] is not a satisfactory probability current, because ~p* ~b # @* ~b)*. We 
therefore define 

j ~ 2 [ ~ b * ( e ~  * e0)~b+@*(e~  * eO)~b)*]eu (6.7) 

and 
p - �89 + (@* @)*] = 1@o~ 2 + 1@212 + 1@o2[ 5 + l~o3l 2 

+ I~o~ + I~'12 + I~o~[ = + I~v312 (6.8) 
From equations (6.4) and (6.7) we verify that 

a~ ~ - akj k = 0 (6.9) 

A very tedious explicit calculation confirms that 
j ,  = ~(4~,.]~o =j~ ,  e~ (6.10) 

Here j  0, consists of 128 terms andjk'  consists of 32 terms. That j  is not easily 
shown to be a 4-vector is somewhat disturbing. However, the covariance 
of equation (6.9) is very convincing evidence in itself. Hereafter we shall 
assume that h = h* = h* so that j can be interpreted as the probability 
current (p is real and positive). Therefore h' = s = hS?*~(' = h but 
m' = s176 m~,(' # m  in general. 
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7. lnner Product 

We now define the innerproduct as 

(~b[~) = f�89 [~b* 5b + (~b* ~)*] d3x (7.1) 

Therefore 
p = �89 ~b + (~b* ~b)*] --- p* = p* (7.2) 

The following properties are easily verified: 

<~b[r = (r (7.3) 

(asb]q~) = a*@]r  = @[a* r  for a = a* (7,4) 

@[agb) = a@[~)  = (a* ~b]~b) for a = a* (7.5:) 

(~b[~)* = (~blr = (~**[~b**) (7.6) 
and 

( ~ l a 6 ) = ( a * ~ [ 6 )  f o r a # a * o r a = (  all a12] (7.7) 
\azi a22] 

We can define the adjoint as follows 

(~blA~) - (At  ~1~) (7.8) 
.-> --> 

Thus for the mass operator defined in equation (5.10) we have 

( ~ b l ~ b ) = ~ ( O  m0, )qg~b) : / / . ! [m* 0 \~blt 0 0m)~b)-=(~b(nO* m ) ~ b ) ( 7 . 9 )  

and 

(~bl~b) = ~ b  (O m0,)~b)= (~b (O m 0 , ) ~ b ) ( 7 . 1 0 )  

Therefore, ~ # ~* unless m = m*. But if m' = oW* rn~ ,  then in general 

m'* = ~q~* m* oW** (7.11) 

so that m - m* ~ rn' = rn'* only for space rotations. Recall that R* = R* 
(a quaternion) for such rotations but in general ~ *  # oL~ a*. For the special 
case m = rn* (scalar mass) we have rn-rn*=> m' = m ' * =  m and then 
~* = ~ .  When m # rn* the wave equation becomes a kind of generalized 
eigen-problem with both ~b and m(~b) to be determined: 

~bm = (m~ ~b) [m(;)] , )  ~bm (7.12) 

The other extreme case for the mass is m -= -m*. Then 

m'* = (~*  m ~ ) *  =,L~* m* ~ = - ~ *  m ~  q~ = - m '  (7.13) 
and 

m'*m' = ( ~ * m ~ ) * ( ~ t m ~ ) = m * m ~ * ~ = m * m  (7.14) 
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Hence 
rn~ m = - [ ( m ' )  2 + (m2) 2 + (m3) 2] (7.15) 

gives a scalar representing the mass of such particles. It is very interesting 
to note that for m = - m S  the two parts of  the wave equation become 
degenerate and 

~b v = ~ba~*(quaternion conjugates) (7.16) 

We have then 

ih O~b a = m* r (7.17) 

when m = -mS, and for a general state m is complex. If  mS m were very small 
but finite, this wave equation could apply perhaps to neutrinos and if so, 
account easily for there being more than one kind by assigning different 
values o f m t m  to them. 

For  the mass expectation value we have 

X (7.18) 

When m = -mS, so that ~b~ = ~b~**, this reduces to 

= f �89162 + m**) Ca -}- ~b.*(m* + mr ~b.**] d 3 x 

= f �89 - m*) ~b, - r - m*) ~b,** 1 d 3 x 

= - (~bl~[~b)* (7.19) 

Thus i f r  is a quaternion state (~b, = ~ba**) the mass expectation value is zero, 
otherwise it is imaginary. But ~b,' would also be a quaternion only for 
rotation transformations, therefore the mass expectation value would in 
general be a non-zero imaginary number for particles with m = - m L  The 
invariant rn* m could be chosen real and would characterize the particle in 
an invariant way. 

The assumption that m r mS, has as its most drastic effect the negation 
of  the superposition principle. This of  itself is not sufficient justification for 
its rejection, however. Agreement with experiment must be the final test. 

8. Plan Waves  and Hyper -Mass  

We show now how to find the analogue of  plane wave states for a free 
particle with m = m" eu. We define energy and momentum operators as 

~ =-- ihe a ~ ~ k  - ih O k = --ih ~--Tl , (8.1) 

and define the rest state ~b,, by m = m and 

~k ~b,, = 0, k =  1,2,or3 (8.2) 
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Thus we have 
0 

or equivalently 

ih 0 ~ ~b am = m* c ~b~,, and ih 0 ~ ~b~, = mc~b.m (8.4) 

We try a solution of  the form 

where 
~: = ~" e,  = ~:o eo + g and ~:i,, = ~, (8.6) 

Direct power series expansion confirms that 

(+i0g) = cos (Igl 0) • i sin (Igl 0) (8 .7 )  exp 

where 
I g l -  + V(gg) = V ( r  k) (8.8) 

Substitution of  equation (8.5) into equation (8.4) shows then that 

ITI~ 
~b~,~ = 7/~bam, ~:~: = m* m and r /=  m* m (8.9) 

Along with equation (8.5) this gives a solution for equation (8.3). If  the rest 
mass m* = m, we have 

~: = =t=m = ~=(m ~ + m) and ~7 = J=l (8.10) 

Transformation to a reference frame moving with velocity - v  along - x  l 
shows that a plane wave with velocity parameter +v along +x I is given by 

{ L * exp [- ~ (y~c2 t - 7~vxX) ] a~ e ~ 1 

~b+ = \ • exp [_ h (Y~c2 t _ y~vxX)] a~ e~ J (8.11) 

where 

L ---- (1( 7 + 1))1/2 eo + (�89 - 1))1/2 el and 
{ /j2~-1/2 

- [1  - 

(8.12) 
Direct substitution verifies that 4,+_ is a solution of  

0 ~ b = ( L * o L  (L, mL) , )  ~ (8.13) 

and that 

m - L * m L =  ra~ + role, + ~/(m2 + i~m3)e2 + ?2(m 3 -  i~m2) e3 

(8.14) 
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By suitably orienting our coordinates in the rest frame we can make  
m 2 = m 3 = 0. Then for this plane wave, r we have m = m. Note also that 
for this special case [L, eli = 0 and [~, eli = 0, so that ~b+ can be an eigenstate 
of the spin operator �89 Direct calculation, using 

d 0 df L*L = 1 and ~ e x p  (/f(0) g) = exp ( / f ( ) g ) i ~  (8.15) 

confirms that d/+ is a generalized eigenstate of the energy, ~, and momentum, 
2k, ' operators as well as the mass operator, 

~+=('L'~oLC2 (yL,~Oc2).)~+ 2k~+=('Lr ~Lv (yL,O~Lv).)~+ 

22r = 0  and 2 3 r 1 7 7  (8.I6) 

This gives the eigenvalues 

E = yL~ ~Lc 2 = ~ m c  2 and pl =_ ~,L~ ~Lv = • (8.17) 

where m is given by equation (8.14). 

The rest state norm gives, using equation (6.8), 

(r162 =-f P~s, d3x= 2[[a~ 2 + laa[ 2+ [a2[ 2+ a312] f d3x 

= [a*a + (a* a)~] f d3x (8.18) 

As before, we obtain no restriction on a = at'e~, for the positive or negative 
energy states. The hypercomplex mass has had no effect on this result. 
There still appear to be twice as many internal states as for the Dirac 
equation. 

The hypernumber a can be written in terms of eigenstates of the spin 
operator �89 as follows 

a = bl,(eo + el) + b2,(e2 + ie3) + bid(e2 -- ie3) + b2a(eo - e3) (8.19) 

We can directly verify that 

p~st=a*a+(a*a)*=2[[bl.[2+ ]b2.[ z + Ib,~l ~ + Ib=~l 2] (8.20) 

The states (e 0 +e l )  and (e2+ ie3) are spin-up; the states ( e 0 - e l )  and 
(e2 - ie3) are spin-down along x l, and all four are mutually orthogonal. 

For the special case r = ~b~*, we get a reduction in the internal degrees 
of freedom and an interesting condition on the spin state. Applying 
~h~ =r to equation (8.1I) we get 

{ L~exp[-~(y~c2t-y~vxa)]a+- l (8.21) 
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where 
a*+* = a+ and a*_* = - a_  (8.22) 

Putting equation (8.22) into equation (8.19) gives 

a la** ~ b~". = ~bad and * = b2u = =Tble (8.23) 
o r  

a+ = b l , ( e  o + el) + b*,(eo - e l )  + b2u(e2 + ie3) - bau(e2* - re3)" 

a_ = b l , ( eo  + e l )  - b l , (eo  - e l )  + bz,(e2 + ie3) + b;~,(e2 - ie3) (8.24) 

We are free to set bl, or bE, equal to zero, but in either case the rest state has 
equal probability of spin-up or spin-down. Remember that el commutes 
with ~ only when our axes are oriented such that m z and m 3 are zero. 
Otherwise, el q~ would not have el operating directly on a. 

Thus for particles with m = -m*, there are only two internal degrees of 
freedom for each sign of the energy in the rest state, but these are not spin 
degrees of freedom if el is properly interpreted as the spin operator. 

9. Sp in  a n d  S p h e r i c a l  P o t e n t i a l s  

If  we define the angular momentum operator as 

i 
Y -= ~ Ix* ~ - ~* x] 

where 

(9.1) 

0 
x = x k e k  and p = p k e  k = ihOkek  = -ih-~-xx~e~ (9.2) 

then we obtain 

= [(X2/03 - -  X3ff 2) -~ �89 e I -}- (cycl. perm.) (9.3) 

Therefore 
,71 ~ X2ff3 __ X3 fi2 _~ �89 --  L l + ~ i  (9.4) 

automatically has the spin operator included in the hyper-number definition 
of angular momentum. 

We define another angular momentum operator 

[c = _ j -  �89 = L k ek + heo (9.5) 
and find that 

~ = (j1)2 -t- (]2)2 _~ (j3)2 .@ kh2 (9.6) 

Thus k has eigenvalues (Schiff, 1955) 4-(j+ �89 = • • ..., and a f has 
eigenvalues --~h, :5~h, :~-zSh, .... As we shall see, k rather than J plays a 
significant roll in spherically symmetric problems. This is strange since J 
has such a seemingly natural form in the hyper-number formalism. Its 
lowest eigenvalues do have a peculiar asymmetry, however. 
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The wave equation, with ihO -+ ihO - Ae/c ,  can be written as 

i h c O ~  ~0,)~b+( Ae (Oe),)~b+c2(O O*)~b--/~r~ b 

(9.7) 

Remember, it is possible that e' = ~ * e ~  and m' = ~*mSe,  which greatly 
complicates the problem. Perhaps some compelling argument can be found 
to justify e - e* for the charge, as we found for h - h* - h*. I fm # m* and/or 
e # e*, then ~ will seemingly not commute with e or m. 

We now convert ~ to spherical coordinates. By substituting from equation 
(9.1) and denoting x = r, we can easily show that 

= ~ [�89 ~ + ~*r) - i J]  (9.8) 

This gives 

r [3ih _ (xl/~l -~- X2/~ 2 r I-3 ~ 0 ] ~f~ + x3 p 3 ) -  iJ] = -  = ~ [ ~ i h  + it~r~. - iJ  

(9.9) 

We now define independent spherical hyper-numbers analogous to basis 
vectors 

x~ek r x 1 x 3 el -- x 2 x 3 ez -- ( (x l )  z + (xl) 2) e3 
e, = C ( - ~ )  lrl' e 0  = C[(x9 2 + (x2) 2] Ir[ 

- - x 2 e t  + x l e 2  

er - V,[(xl)Z + (x2)Z] 

It can be directly verified that 

er er = eo, eo eo = eo, 

eoe~ = ie~, e~e~ = ieo, 

e$ e r = --e  r er er* = --er, 

We then have 

(9.10) 

e 4, e 4, = eo, e~ eo = ie 4. 

er eo = --eo e~, eo e~ = - e ~  eo, 

e0* = -eo and e~* = -e~ 
(9.11) 

^ . 0 
P = e r ( - t h ~ - i  h + ~ (9.12) 

By using equations (9.1), (9.5) and (9.10) we can show that ~ and e, anti- 
commute. Also, 

o) ond 10) 
anticommute; therefore 
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commutes  with 

That  ~: commutes  with 1/r follows f rom equation (9.5) and the fact that  L ~ 
involves only 0 and q~ and their differentials. 

I f  we now try to solve say the coulomb problem we run up against the 
problem o f  separating ~ into radial and angular parts. This needs further 
study. I f  we make the plausable assumptions that  in equations (9.7) and 
(9.12), ~ can be replaced by its eigenvalue hk i f ~  is taken to be ~"(r )e , ,  and 
m = m*, e = e*, we get the same energy levels as the Dirac equation for the 
coulomb potential.  

This shows that  the hyper-number  formulat ion given here is probably  
correct  for  ordinary quan tum phenomena,  but  does it contain anything new ? 
The anisotropic hyper-mass and the generalized eigenproblem are, I think, 
new. Whether  they will prove physically significant remains to be seen. 
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